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Abstract

A model of the one-dimensional dynamic behavior of elastomeric materials is developed based on a previously
existing model. An initial model consisted of nonlinear multiple anelastic displacement fields in parallel with discrete
friction elements. The motivation for the development of a new model is reduction of the number of parameters needed
to accurately capture material behavior. A new element, a “continuously yielding element,” is developed, which con-
ceptually represents a distribution of parallel friction elements. This element replaces the entire collection of discrete
friction elements used in the initial model. In addition, a linear fractional derivative anelastic displacement field element
replaces the multiple linear anelastic displacement field elements used in the older model. Finally, nonlinearity is
introduced into the fractional derivative anelastic displacement field element, in an attempt to capture observed
amplitude dependence of storage and loss moduli at higher amplitudes. The different parts of the new model are first
compared individually to those of the initial model then combined and compared as an integrated whole. The new
model captures the frequency and amplitude variation of the storage and loss moduli of the material better than the
initial model, while the total number of parameters is reduced to seven from sixteen.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

High-damping elastomeric materials find wide use in engineering applications. For example, they are
used in dampers in helicopter rotors, in engine mounts to provide vibration isolation, and for seismic
isolation of large structures such as nuclear power plants. The motivation behind this research is the
application of such materials to dampers in helicopter rotors. In this case, elastomeric materials, deforming
primarily in shear, are used to damp the in-plane vibrations of the rotor to ensure aeromechanical stability.
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There are many complex and often unique design issues associated with the design of elastomeric dampers.
The stiffness and damping properties of an elastomeric material depend on the frequency and amplitude of
excitation and also on the temperature. To facilitate damper design, the nonlinear behavior of the elastomer
material needs to be captured accurately in a compact model, preferably one having a minimum number of
parameters for a required level of accuracy.

Over the years, various models have been developed, both frequency-domain and time-domain, to
capture the behavior of elastomeric materials. For many years, the preferred method of describing the
stiffness and damping properties of elastomers was in the frequency domain, using storage and loss moduli,
the real and imaginary parts of the complex modulus (Kunz, 1997). This method models the damper as a
linear spring and a linear viscous damper operating in parallel. Recent research has focused on time-domain
modeling of elastomeric dampers. Panda et al. (1996) developed a nonlinear damper based on the local
displacement and local peak strain. The effectiveness of this model over a large range of amplitudes and
frequencies has not yet been demonstrated in the literature. A nonlinear viscoelastic solid model was also
developed by Gandhi and Chopra (1996). This model uses several nonlinear spring elements combined with
a linear dashpot. While the nonlinear spring improves the fidelity of static response, the hysteresis loops are
not accurate (Brackbill et al., 2000).

Another approach that has been used to model the dynamic response of elastomers is based on the concept
of anelastic displacement fields (ADF). The ADF approach is a physically motivated continuum model
originally developed to model the apparent frequency dependent stress—strain behavior of linear viscoelastic
materials (Lesieutre et al., 1996; Lesieutre, 1992). In the ADF approach, the total displacement of the
material under a load is considered to be the sum of two parts: (1) an elastic part and (2) an anelastic part. The
physical interpretation of the single-ADF concept is shown in Fig. 1; the elastic displacement is proportional
to the instantaneous load, while the anelastic displacement continuously relaxes to an equilibrium value. The
anelastic part itself might consist of several sub-parts. In general, adding more anelastic fields (internal
variables) improves the accuracy of this linear viscoelastic model over a broad frequency range.

Continuing research using this approach of multiple anelastic displacement fields by the latter authors
has led to the development of a general nonlinear time-domain model that captures the dependence of
stiffness and damping properties on strain amplitude, frequency, and temperature (Brackbill et al., 2000;
Govindswamy et al., 1995). One kind of softening nonlinearity is introduced in the dissipative part of the
ADF, by using a nonlinear anelastic stress and anelastic strain-rate relationship. Another, in the form of
friction damping and linear spring elements, is added in parallel with the nonlinear ADF model. A friction
element is characterized by a yield stress, i.e., a stress beyond which the element yields and the stress across
the element remains constant even when the strain increases. Such friction—spring elements are discussed in
the literature as a means of capturing the rate-independent nonlinear dissipative behavior of materials
(Austrell, 1997). In general, this nonlinear multi-ADF and friction element (NMAF) model can include
several internal inelastic fields and several friction—spring pairs. This model is shown schematically in Fig. 2.
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Fig. 1. Physical interpretation of the single-ADF model.
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Fig. 2. Mechanism based division of the NMAF model.

The constitutive equations of this model are:
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Eq. (1) gives the total stress as the sum of stress in the nonlinear-multi-ADF element (first two terms) and
the friction-spring pairs (third term). In this equation, o is the total stress; ¢ is the total strain; & is the
anelastic strain, i.e., the strain in each dashpot of the nonlinear-multi-ADF element; G, is the high fre-
quency modulus of the nonlinear-multi-ADF element; af is the stress in each friction—spring pair. Eq. (2) is
the relaxation equation relating the anelastic strain rate to the anelastic stress (¢). In this equation ¢
relates the stiffness of each of the spring of the ADF element to the high frequency modulus (G,); K is the
nonlinear factor of each dashpot; €; is the inverse of relaxation time at constant strain of the dashpot. The
relaxation time is the time constant, associated with the decay of the anelastic strain to equilibrium value,
when an initial total strain is applied. Eq. (3) gives the anelastic stress in terms of the total strain and the
anelastic strain. Eq. (4) gives the stress in each of the friction—spring elements. Here, G; is the stiffness of the
spring, and ¥; is the yield stress of the friction element. Note that when multiple ADF are included, each
field requires a set of parameters for K;, Q and c¢; but there is only a single value for G,. In Egs. (1)-(4), N
anelastic displacement fields and M friction—spring pairs are used. Motivated by helicopter lag damper
applications, the NMAF model was validated in the frequency range of quasi-static to 10 Hz and strain
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amplitude range of 0.1-20%. Three anelastic displacement fields and three friction—spring pairs were used to
match the predictions of this model to experimental data. The model captures the stress response quite
accurately over the frequency and amplitude range of interest, but uses 16 parameters to do so, not
including additional parameters for temperature dependence. The model can sometimes be cumbersome to
characterize and there may be issues of uniqueness. In order to reduce the number of parameters involved, a
new model is developed herein, building on the preceding model. The new model uses fractional derivatives
and a continuously yielding element.

The models described to this point use integer derivatives to capture dynamic behavior. Fractional
derivatives provide an alternate approach. In a series of papers, Bagley and Torvik and Bagley and Calico
developed a fractional derivative model of viscoelastic material behavior and applied it to a number of
structural modeling and response problems (Bagley and Torvik, 1983, 1985; Bagley and Calico, 1991). An
important feature of this approach is its ability to capture the relatively weak frequency dependence of
storage and loss moduli exhibited by many materials, using just a few, typically four, model parameters.
This feature makes the fractional derivative model especially useful in frequency-domain analysis. Bagley
and Torvik initially developed frequency-domain finite elements that could predict structural responses for
load histories that have Laplace transforms. In later work, Bagley and Calico (1991) developed a time-
domain version with fractional state equations. In the time domain, the presence of fractional operators
makes the solution of structural dynamics equations somewhat more complicated than it is for those
involving ordinary differential operators.

Enelund and Lesieutre (1998) later introduced fractional derivatives in the anelastic part of a single-ADF
model. This model captured the frequency dependence of the loss factor better than the multi-ADF model,
and used fewer parameters. Time-domain expressions for the corresponding stress relaxation modulus and
the relaxation spectrum were presented.

The objective of the present research is to develop a time domain model that accurately captures the
frequency- and amplitude-dependence of elastomer mechanical behavior in a uni-axial stress state (shear),
using fewer parameters than the NMAF model. Different parts of the current approach were reported
previously by the authors in two conference papers (Ramrakhyani et al., 2001, 2002) but are included here
for the sake of completeness. The new model is developed using the NMAF model as a starting point. The
NMAF model can be divided conceptually into three parts, the linear multiple ADF elements, the non-
linear ADF viscous dashpots, and parallel discrete friction elements as shown in Fig. 3. The main features
of the approach used to improve the model include:

Discrete Friction-
Spring Elements

Linear Multi-ADF

Viscous Nonlinearity

Fig. 3. Conceptual division of the NMAF model.
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. replacing the discrete friction—spring elements with a continuously yielding element;

2. replacing the multiple linear ADF elements with a linear fractional derivative element; and

3. introducing nonlinearity in the fractional derivative element to capture the behavior of elastomers at
higher amplitudes better, in a way that is analogous to the nonlinear viscous aspect of the NMAF model.

Each of these elements of the new model is described in a separate section. They are then compared to
the corresponding parts of the initial NMAF model. The predictions of the entire model with all three parts
are combined compared to experimental data. An added benefit of a more compact model that has fewer
parameters is that the parameters take on increased physical significance.

2. Continuous yielding element

In the NMAF model, discrete-spring—friction elements are used to capture rate-independent nonlin-
earity. Each of these friction elements uses two parameters: the ultimate yield stress, Y}, and the stiffness, G;.
The spring-friction element can be shown as a linear spring connected in series with a friction element as
shown in Fig. 4.

The friction element is locked initially when the strain is 0. As the strain in the element increases, the
stress increases linearly, and when the stress in the spring reaches the yield stress of the friction ele-
ment, the element yields. As the strain continues to increase, the stress in the element remains constant.
This occurs for both positive and negative monotonically changing strains. This behavior can be seen in
Fig. 5.

The stress—strain behavior of three of these friction—spring elements connected in parallel is shown in
Fig. 6. The three friction elements have different yield stresses, 11, Y», Y3, and the corresponding springs have
stiffnesses G, Gy, G;. As the strain increases from 0, the stresses increase in all three elements. Consider the

Discrete Yielding

G; €

Fig. 4. Spring—{riction element.

Fig. 5. Behavior of a spring—friction element for increasing or decreasing strain.



3934 D.S. Ramrakhyani et al. | International Journal of Solids and Structures 41 (2004) 3929-3948

(9
Yo+ Yo+ Yyt
Yo+ Y, b .36,
Y,--}-/C1* G
-iG, + G, + G, e

Fig. 7. Schematic of the continuously yielding element.

case when the spring-friction element pair Gs, V3, yields first. The total stiffness for increasing strain in this
case is due to two springs and is equal to G| + G,. When the second element yields, the total stiffness is just
Gy, and when the last element yields the stiffness is 0. At this point, the stress can no longer increase and is
equal to the ultimate yield stress, which is given by Y, + Y, + Y5. The continuously yielding element captures
the behavior of a large number of such friction—spring elements in parallel, in which the yield stress of each
of these friction elements is infinitesimally higher than that of the previous one. As the strain increases the
elements yield one by one until all elements have yielded.

Consider a system with m, (m — oo) friction—spring elements in parallel, as shown in Fig. 7. As the strain

is increased, springs 1,2,3,... n, yield in turn. The fraction of elements yielded can now be defined as
shown in Eq. (5).
Yy 221G (5)
g Zj:l G./'

If all the springs are assumed to have equal stiffness then the fraction of yielded elements, a,, henceforth
called the “yielded area fraction,” can be written as:

ay = — (6)

m
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Fig. 8. Stress—strain behavior of both discrete and continuous yielding models for increasing strain.

As the strain increases, the number of elements that yield increases and hence the yielded area fraction
increases. Assume that this yielded area fraction, ay, varies linearly ! with stress, i.e.,

ay = pilo| (7)

The current stiffness of the system for increasing strain, k, is due to the contribution of only those elements
that have not yielded. This can be expressed in terms of the total stiffness, K, as:

k=(1-ay)K (8)
The incremental stress is related to the incremental strain as follows:
do = kde 9)
Substituting the value of k, from Eq. (8) and a, from Eq. (9), and integrating gives:
1
o =—[1 —eHKe 10
u[ ] (10)

Eq. (10) gives the relationship between the stress and strain of a continuously yielding element, for
increasing strain. In this expression, as ¢ — oo all the elements yield and the corresponding stress is the total
yield stress. Thus, the variable u is the inverse of the total yield stress. The variable K is the initial stiffness
when the strain is 0. The stress—strain behavior of the continuously yielding element is compared to that of
the three discrete friction—spring elements in Fig. 8, for continuously increasing strain.

If the discrete friction—spring model is expressed in terms of the product of fractional area yielded and
initial stiffness, and the variation of the yielded area with increasing stress is plotted, the yielded area is a
stepped function, as shown in Fig. 9.

Eq. (10) gives a nonlinear relation between stress and strain for increasing strain. This equation just
represents a nonlinear spring; the dissipative behavior of a friction element has not yet been addressed. Fig.
10 shows the behavior of a single friction—spring element under conditions of increasing, then decreasing
strain. As the strain is increased, the stress increases linearly until the friction element yields (point 2) and
the stiffness becomes 0 and the strain increases to point 3. Then, the strain is decreased until the friction

! Note that some other variation could be used instead of the linear variation that is used here.
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Fig. 10. Behavior of a single friction—spring element.

element yields again (point 4). Two things can be observed from this behavior. One is that, when the
friction element has yielded under increasing strain, and then the strain is decreased, the friction element
locks. The stiffness for decreasing strain at this point (point 3) is equal to the spring stiffness. Also, for the
friction element to yield again as the strain decreases, the strain must decrease by twice the amount initially
required for yielding. This allows the stress in the spring to first go to 0 before increasing in the opposite
direction to the point of yielding.

The continuous yielding element can be represented as many of these friction—spring elements in parallel
as shown before in Fig. 7. When the strain increases from 0, the yielded area fraction, ay, increases with
stress at a rate p. As the strain stops increasing and starts decreasing, all the friction elements that had
previously yielded, now lock. The stiffness of the system now is the initial stiffness and, hence, the yielded
area fraction is 0. As the stress decreases, the yielded area fraction increases in proportion to the stress
change from this point, i.e., it will be proportional to the absolute value of the difference between the
current stress and the stress at the point when the elements lock. Also, as seen before in the case of a single
friction—spring element, the strain in each of the infinitesimal elements of the continuously yielding element
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should decrease by twice its initial yielding strain before it yields again. So, the yielded area fraction now
increases from 0 at a rate > y1/2, instead of u, with respect to the stress. This can be expressed as follows:

u
ay:§|a—asc| (11)

where o is the stress at the sign change of the strain rate, i.e., the stress at the point when the strain stops
increasing and starts decreasing or vice versa. In an incremental algorithm this can be implemented in the
following way:

if ay > aymax then

b=n

Aymax = dy
else

¢ =p/2

where aym.x 1s the maximum area yielded in the entire history and ¢ is the rate of yielding. The corre-
sponding stress for a given strain sequence can be calculated as shown:

ay = ¢|O-i - O-cos‘
k=(1-ay)K
do = kde

oiy1 = 0; +do

Fig. 11 shows the behavior of the continuously yielding element for a sinusoidal strain variation.

Consider another strain history as shown in Fig. 12. As the strain increases along the path from points 0
to 1, the rate of yielding is y, since all the springs start from a zero stress state. Say that n; elements, of
a large number of elements, yield in this process as shown in Fig. 13. Now as the strain decreases along
the path from points 1 to 2, the rate of yielding is x/2, since the elements that previously yielded in the
positive direction now yield in the negative direction. Say n, elements yield in this process. Since the rate of
yielding along the path from points 1 to 2 does not exceed p/2, n, < n;. As the strain decreases along the
path from points 1 to 2, the friction elements of the (n; — n,) elements stay locked and the stresses in these
elements decrease. Now, as the strain increases along the path from points 2 to 3, the rate of yielding is
again u/2 and the n, elements that had previously yielded, yield again as the stress reaches point 3. The
friction elements of the (n; — n,) elements stay locked and the stresses in these elements increase by the same
amount. So, at point 3 all these (7, — n,) elements are at a point of incipient yielding and begin to yield as
the strain increases beyond point 3. Hence at point 3 the yielded area fraction (ay) has the value that it had
at point 1.

This logic is implemented in an algorithm as follows: whenever the yielded area fraction at the current
stress reversal is less than the yielded area fraction at the previous stress reversal, the yielded area fraction,
(ay), the stress, (o), and the sign of the stress rate, at the previous stress reversal are appended to arrays of
such stored values. At every time step, the value of current value of stress and sign of stress rate are

? The rate at which ay increases is equal to the rate at which the elements yield with stress and will sometimes be referred to as the
rate of yielding.
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Fig. 11. The stress—strain behavior for a sinusoidal strain history.

compared to the stresses and the corresponding signs of stress rate in the arrays of stored extreme points,
starting from the most recently stored values.

Whenever the current stress exceeds the stress stored in the array with the same sign of the stress rate
(dir), the current yielded area is replaced by the stored yielded area. The stored arrays are then truncated,
deleting the values just used and any values after it. For example, in the strain history being considered, the
data of point 1 is stored at point 2 and is removed at point 3.

Thus, a continuously yielding friction element is developed which captures the effective behavior of many
discrete friction—spring elements in parallel. Parameter identification and a comparison to the initial dis-
crete model are made in the results section.

3. Linear fractional derivative model

In the NMAF model, the relaxation equations, Eq. (2), are first order in time and hence multiple internal
fields (anelastic strains) are required to capture the relatively weak frequency dependence of the loss factor.
By using a fractional derivative operator in the evolution equations for the anelastic strains, the observed
material behavior can be accurately described using a single anelastic strain (Enelund and Lesieutre, 1998).
In the fractional derivative approach, the relaxation equation takes the following form:

A :c—g“m(gf*) — Gule— ce) (12)
where D* is the derivative operator of order « (0 < « < 1) G, is the high frequency modulus, Q corresponds
to the relaxation time at constant strain, and c is obtained from the high frequency and low frequency
moduli (Eq. (13)). The above equation relates the stress in the fractional dashpot (Fig. 14), or the anelastic
stress, to the anelastic strain. It also relates the anelastic stress to the total strain.
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Fig. 13. Schematic to illustrate the properties of a continuously yielding element.
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The total stress can be calculated from the total strain and anelastic strain as follows:
o=G,(e—¢") (14)

By applying Fourier transforms to Eqs. (12) and (14) and eliminating the anelastic strains, the corre-
sponding dynamic modulus is obtained as

G, — G,

(G )a (15)
(1+ (iw/Q)")
where w is the frequency, G, is the high frequency modulus, and G, is the low frequency modulus.

The fractional derivative model can be represented schematically as shown in Fig. 14.

G(w)=G, —

3.1. Time domain modeling of the fractional ADF element

This fractional derivative model must be implemented in the time domain in order to introduce
amplitude-dependent nonlinearity, i.e., time integration of the fractional derivative is required. To do this,
the Grunwald definition of the fractional derivative is used, which, when discretized in time, gives (Oldham
and Spanier, 1974):

()0 + S50 B@E),)

(Dl(eA))n+1 = (Al)a (16)
where
__Tl-9
P = TG "

and I is the gamma function. Eq. (16) is used in conjunction with Egs. (12) and (14) to calculate the stress.
As seen in Eq. (16), the fractional derivative of a function at a point in time depends on the entire past time
history, unlike an integer derivative, which can be obtained quite accurately from the value of the function
at a finite number of previous points. In order to obtain the fractional derivative of a function, the values of
the function at points in the past are weighted by a factor B;, which is itself a function of the time index, j,
and order of differentiation, o. The variation of this factor B; with index is illustrated in Fig. 15. As seen in
Fig. 15, the value of B; decreases with increasing index.

This implies that the value of the function at points in the past closest to the current point have more
effect on the current value of the fractional derivative, and that the value of the function at points further
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back in the history have a diminishing effect. This is known as ““fading memory”. Also, as seen in the figure
for = 0.23, the history has a larger effect on the value of the fractional derivative than it does for o = 0.99.
The limit of the sum of the factors, B;, as j tends to infinity, is found to be —1 for all values of o less than
and including 1. This was observed through numerical calculations.

The entire history is generally needed to calculate the value of the fractional derivative at the current
time. However, for practical numerical computations, the time history must be truncated. One approach is
to neglect the history at times so far in the past that B, is smaller than some threshold value. Experience has
shown, however, that the error due to truncation can be large, for small o, even if a very small threshold
value is chosen. The effect of truncation can be seen in Fig. 16. The test case consists of a strain history with
strain linearly increasing from 0 to an arbitrary value, and constant thereafter. The anelastic strain is then
plotted with time for a value of o = 0.23. When the entire history is used, in the anelastic strain increases
with time and reaches an equilibrium value. But if the strain history is truncated based on a cutoff value for
B, this correct equilibrium anelastic and thus total, strain is not reached. This result was observed even if a
very small cutoff value was chosen for B;.
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o
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Fig. 16. Effect of truncation on the anelastic strain calculation.
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The error in the calculation due to truncation is reduced by altering the values of B; used in the cal-
culation of the fractional derivative. The values of B; used in the truncated calculation are multiplied by a
weighting factor. Several methods of weighting were explored. One was the use of a constant value for the
weight, so that the weighted sum of the truncated series of B;, is equal to the sum of the series of B; for a
very large number of points (—1) as shown below in Eq. (18).

~ B, 1
B; = %“7‘23 = —WBJ'7 Amax = truncated value (18)
n=0 —n n=0 —n

Another approach was to use an exponential weighting function so that the initial values of B; have a larger
weight than the later values as in Eq. (19).

> om0 Bn ey .
B}{lJr(ZZmaan—l xe | x By, j=0,1,... N (19)

here, however,

Nmax

> B #£-1 (20)

Both these methods are very effective in correcting the relaxation behavior of the model, as seen in Fig. 17.
The test case is the same as that used in Fig. 16.

The figure shows the variation of anelastic strain with time for different weighting schemes. In the figure,
truncation using constant weights and truncation using exponential weights show almost the same relax-
ation behavior as the case in which the series of B; was not truncated.

The anelastic displacement field model using fractional derivatives is presented both in the frequency
domain and the time domain. The time domain implementation of the fractional derivative is cumbersome
because it generally involves the calculation of the entire past history. The calculation time is reduced using
truncation and a weighted history. A limit on the error due to truncation can also be found by a method
provided by Podlubny (1999). Another way of reducing the calculations involved could be by using a sparse
time history as proposed by Adolfsson et al. (2002).
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Fig. 17. Relaxation curves for different weighting schemes.
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4. Nonlinearity in the fractional derivative element

In the NMAF model, a viscous nonlinearity was introduced to capture the rate-dependent amplitude
dependence of the model stress—strain behavior at higher amplitudes (1-10%). This was done by intro-
ducing a cubic term in Eq. (2), the relaxation equation. The nonlinearity added makes the dashpot softer at
higher amplitudes.

Several methods for introducing nonlinearity in the fractional derivative element were evaluated; four
were unsatisfactory while one worked well. The first method was to introduce a nonlinear relation between
the anelastic stress and fractional derivative of the anelastic strain, instead of a linear relation, as shown in
Eq. (21)

- G,

D*(e") (0*) + Ca(ah)" (21)
In this equation, C; is the coefficient multiplying the nonlinear term, and » is any positive number. This
method does not work well for small values of o (o < 0.5). For small values of «, the fractional derivative at
the current time depends strongly on the history, as seen previously. So, making the fractional derivative
proportional to the nth power of the anelastic stress at the current time does not have much effect.

The second method that was considered involved making the strain rate proportional to the current
anelastic stress and to a weighted history of the stress points, instead of to a single point in the past. This
approach however, did not yield acceptable results.

The third method involved making the order of fractional differentiation amplitude dependent, and the
fourth involved making the weighting functions amplitude dependent. The former did not give elliptical
stress—strain loop shapes for a sinusoidal strain and the latter did not predict the loss modulus well. Both
these methods, however, produced significant nonlinear behavior. The entire past history of anelastic strain
was used in these methods.

Hence to introduce nonlinearity effectively, the entire history should be included in the calculation of any
nonlinear behavior. Using this insight, a nonlinear term involving the anelastic stress was introduced in the
history as shown in Eq. (22). This approach is similar to the one used in the NMAF model when o = 1.

LA (8nA+l + Eja Bj(a) (8nA+l—j + knlo-nA-H—j 0$+1—jD)
D‘(8n+l) = (A[)oc (22)

This method works well with the ADF model, and model predictions look very much like the experimental
data, as will be seen in the results shown later.

5. Parameter identification and comparison of the models

Initial parameters for the current model were obtained by comparing individual parts of the new model
to individual parts of the NMAF model. Using the parameters so obtained as a starting point, model
predictions are compared to experimental data, and the parameters are adjusted to improve agreement.

5.1. Continuously yielding element

The continuously yielding model was fit to the set of discrete friction elements of the NMAF model, the
parameters of which were previously obtained by fitting to experimental data. Three discrete friction—spring
pairs were used in the NMAF model, requiring six parameters. The initial stiffness K, was obtained from
the discrete friction—spring elements by summing the stiffnesses of all the springs. The reciprocal of the
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maximum yield stress gives the rate parameter, u. The parameters of the discrete friction elements and the
corresponding continuous yielding element are given in Table 1. Fig. 18 shows the stress strain hysteresis
loops obtained from both models. The current model, with just two parameters (¢ and K), captures the
stress strain behavior shown by the three discrete elements quite accurately. In fact, it has a much smoother
behavior than that of the three discrete friction—spring pairs, which is more typical of real material
behavior.

In the continuously yielding element, the rate parameter, u, is the reciprocal of the stress at which the
element yields completely and the stiffness parameter, K, is the initial stiffness of the element. This physical
insight is useful in determining parameters uniquely from data.

5.2. Linear fractional derivative element

The initial parameters of the linear fractional derivative model were estimated using the variation of
storage modulus and loss factors predicted by the linear multi-ADF part of the NMAF model over a
frequency range of 0.01-1000 Hz. The parameters were determined using an optimization procedure that
reduced the weighted error in the complex modulus at different points in the considered range of fre-
quencies. This range was chosen to completely capture the variation of the loss factor as predicted by the
NMAF model. The results, along with the parameters of the NMAF model that were used for charac-
terization are given in Table 2.

Table 1
Parameters used in the friction models
Discrete elements G; (psi) Y; (psi) Continuous yielding element
Spring 1 194.5 0.134 u=1235psi’!
Spring 2 102.7 0.246 K = 380.44 psi
Spring 3 83.24 0.418
0.8 —
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Stress (psi)

-0.2
-04
- Discrete Yielding El nts
08 — Continuous Yielei lements
0.8 ——
-0.01 -0.005 0.005 0.01

0
Strain (%)

Fig. 18. Comparison of the continuous and discrete yielding elements.

Table 2

Characterization parameters and results
NMAF model G, = 312 psi Fractional derivative model
C, =449 Q; = 0.05 rad/s o=0.23 G, =410 psi
C, =5.05 Q, = 3.25 rad/s

C; =3.31 Q3 = 120.5 rad/s C=1.1197 Q =19.3 rad/s
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5.3. Complete model—characterization

Using the parameters thus obtained as a starting point, predictions made using the entire combined
model, including the nonlinearity in the fractional derivative part are, compared to experimental data. A
gradient-based optimization method was used to vary the parameters to improve the fit to experimental
data. This experimental data used consisted of a frequency sweep (0.01-10 Hz) at 1% strain amplitude, and
an amplitude sweep from (0.1-10% strain) at 1 Hz.

The effective storage and loss moduli predicted by the model are compared to experimental data in Figs.
19 and 20. The corresponding model parameters are listed in Table 3. As seen in the figure, the predictions
vary smoothly with both amplitude and frequency, and the model does a better job of capturing the
material behavior with far fewer parameters than the number used in the NMAF model.
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Fig. 19. Amplitude variation of complex modulus predicted by the two models compared to experimental data at 1 Hz.
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Fig. 20. Frequency variation of complex modulus predicted by the two models compared to experimental data at 1% strain amplitude.
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Table 3
Characterization parameters and results

Fractional derivative model

o = 0.365 G, = 443 psi ko =9.5¢—6 psi~? (nonlinear factor in Eq. (22))
C=144 Q =147 rad/s K =400 psi u=1.144 psi~!

5.4. Complete model—validation

To validate the model, predictions of the variation of complex modulus with frequency and amplitude
are compared to experimental data that were not used in the parameter identification. Model predictions of
frequency variation at 10% strain amplitude and amplitude variation at 10 Hz are compared to experi-
mental data as shown in Figs. 21 and 22. The new model gives smoother results, more representative of real
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Fig. 21. Amplitude variation of complex modulus predicted by the two models compared to experimental data at 10 Hz.
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Fig. 22. Frequency variation of complex modulus predicted by the two models compared to experimental data at 10% strain amplitude.
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material behavior than those of the NMAF model. The NMAF model, due to its discrete nature, has
shallow inflections in its predictions.

6. Conclusion

The previously developed NMAF model describes the behavior of the elastomer in the considered range
reasonably accurately, but requires 16 parameters to do so. This model uses multiple nonlinear ADF
elements in parallel with multiple discrete friction—spring pairs. A new continuously yielding element,
containing two parameters, was developed and used to replace the discrete friction element part (six
parameters) of the NMAF model. The linear multi-ADF part (seven parameters) of the NMAF model was
replaced by the fractional derivative ADF model (four parameters). Different methods of introducing
nonlinearity into the element were evaluated and a nonlinear fractional derivative element was developed
with the addition of two parameters. The number of parameters required to accurately capture elastomeric
behavior was reduced by 9, from 16 to 7.

The different parts of the new model were integrated and its performance was compared to that of the
NMAF model. The new model captures the frequency and amplitude variation of the storage and loss
moduli of the material better than the NMAF model. The parameters of the new model, while fewer in
number, also have better physical interpretation. The parameters of the continuously yielding element
depend on the initial stiffness and ultimate yield stress of the element. The parameters of the fractional
derivative element are related to the high frequency modulus, low frequency modulus, the relaxation time at
constant strain and variation of loss factor with frequency. The nonlinear parameter can be obtained by
examining the behavior of the model at higher amplitudes.
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